Journal of Organometallic Chemistry, 336 (1987) 343-348 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

1 1 N. 1

EPR spectra of products of the reaction of di- η^5 -cyclopentadienyl(diethylalanedi- μ -chloro)titanium(III) with C₁ compounds

S.K. Tyrlik *, A. Korda,

Laboratory of Homogenous Catalysis, Institute of Organic Chemistry, Polish Academy of Sciences, 00-961 Warszawa, Kasprzaka 44 (Poland)

L. Poppe,

Institute of Physical Chemistry, Polish Academy of Sciences, 00-961 Warszawa, Kasprzaka 44 (Poland)

A. Rockenbauer and M. Györ

Central Research Institute for Chemistry, Hungarian Academy of Sciences, Budapest II, Pustaszeri ut.59 (Hungary)

(Received May 27th, 1987)

Abstract

The outcome of the reaction of di- η^5 -cyclopentadienyl(diethylalanedi- μ chloro)titanium(III) (IA) with MeOH depends strongly on the molar ratio: with IA/CH₃OH < 0.75 the methanol cleaves the Al-Et bond; with higher ratios solvated Cp₂TiCl is formed. The compounds HCHO, CO₂, HCONH₂, HCO₂CH₃ and (CH₃O)₂CO react with IA at the Al-Et bond to give new paramagnetic dimers independent of the molar ratio. The chlorinated species CH_xCl_{4-x} (x = 0-2) either oxidize titanium(III) to titanium(IV) or give unidentified paramagnetic species.

Introduction

Low valent titanium is known to show a strong affinity for oxygen [1]. Although the majority of known titanium systems involve titantium(II) or a lower oxidation state, there are recent reports that the titanium(III) complexes can also be active in oxygen abstraction from organic compounds; e.g. in reaction 1:

$$2[CpTi(Cl)_2(THF)_{1.5}] + CH_2O \rightarrow [CpTi(Cl)_2]_2O + CH_2 = CH_2$$
(1)

0022-328X/87/\$03.50 © 1987 Elsevier Sequoia S.A.

^{*} Adress correspondence to this author; current adress: Institute of Industrial Chemistry, Warsaw, Rydygiera 8 (Poland).

However, there has been no report of a process in which titanium activates oxygen-containing organic compounds in the following way:

$$\mathbf{R}_{x}\mathbf{C}\dots\mathbf{O} + [\mathrm{Ti}] \to \mathbf{R}_{x}\mathbf{C}^{\star} + \mathbf{O}^{\star}$$
(2a)

organic material + $R_x C^*$ + $O^x \rightarrow$ products of O incorporation +

products of $R_x C$ incorporation (2b)

In this connection oxygenated C_1 compounds are of obvious interest. We are seeking possible applications of oxygenated C_1 compounds in reactions with condensed aromatic or hydroaromatic systems in order to produce aliphatic or functionalized aromatic chemicals:

$$\begin{array}{c} \text{(Condensed aromatics)} \\ \text{(or hydroaromatics)} + \text{(oxygenated C_1's } \xrightarrow{[Ti]} \text{(aliphatics or} \\ \text{(functionalized aromatics)} \end{array}$$

Reaction of [Ti] with oxygenated C'_1 could therefore provide an entry to this chemistry. Following this approach we have studied reactions of di- η^5 -cyclopenta-dienyl(diethylalanedi- μ -chloro)titanium(III), Cp₂TiCl₂AlEt₂ (IA) with C₁ species. Since IA contains Al-Et bonds it can be expected [6] to undergo reactions of the types:

 $AI-R + R'OH \rightarrow AIOR' + RH$

 $A1-R + R'_2C=O \rightarrow AOCR'_2R$

Compound IA is a paramagnetic species belonging to the class of heterobinuclear cyclopentadienyl complexes $Cp'_2TiX_2AlY_2$ (I) for which the ESR spectra have been studied [3]. Reactions of IA with oxygenated C_1 's could produce paramagnetic species as follows: (1) compounds of the types $[Cp_2Ti(Cl)] \leftarrow [oxygen in Cl_1]$ or $Cp_2Ti(OCH_3)$, as products of decomposition of the heterobinuclear dimer. (2) Compounds in which Al-Et bonds have been cleaved with preservation of the dimer structure.

In addition, diamagnetic titanium(IV) compounds, such as $[Cp_2Ti(Cl)_2]O$ or $Cp_2Ti(Cl)OC(R_2)C(R_2)O(Cl)TiCp_2$, can be formed from ketones, $R_2C=O$. It was also of interest to find out whether chlorinated C_1 compounds oxidize the titanium(III) in IA.

This paper describes the paramagnetic reaction products of the above reactions.

Results and discussion

Reaction of Cp₂TiCl₂AlEt₂ (IA) with CH₃OH

Compound IA was prepared by treating Cp_2TiCl_2 with $AlEt_3$ in a 1/1 molar ratio in tetralin. The molar ratios CH_3OH/IA are based on the amount of Cp_2TiCl_2 initially taken and since the reaction of Cp_2TiCl_2 with $AlEt_3$ is probably not quantitative, the actual $CH_3OH/[Ti]$ ratios may be somewhat higher.

With increase in the CH₃OH/[Ti] ratio there is a significant change in the EPR spectrum of the reaction mixture, as can be seen from Fig. 1 and Table 1. Starting from the single line of the initial Cp₂TiCl₂AlEt₂ there is a gradual change through a six-line multiplet to a new sharp singlet when there is an excess of CH₃OH. For a ratio of CH₃OH/[Ti] of 0.5/1 (Fig. 3B) the original singlet in the spectrum has

. ~

Fig. 1. EPR spectra of reaction products of IA with methanol for various molar ratio of IA to MeOH. A: IA without methanol; B: IA $CH_3OH 1/0.5$; C: 1/0.75; D: 1/1; E: 1/2; F: 1/5.

become broader, possibly as a result of solvation. With a CH₃OH/[Ti] ratio of 0.75/1 there is a superposition of the spectrum of IA and that of the initial reaction product, which we suggest is a methoxy derivative Cp₂TiCl₂Al(OCH₃)Et (IIA). With a 1/1 ratio, a spectrum (Fig. 1D) that can be ascribed to pure IIA is observed. Comparison of spectrum D (g = 1.978, a_{A1} 0.34 mT, a_{Ti} 1.05 mT) with the spectra

Spectral parameters of the products from the reaction of Cp ₂ TiCl ₂ AlEt ₂ (IA) with CH ₃ OH					
Molar ratio IA/CH ₃ OH	g	H _{1/2} (mT)	a _{Al} (mT)	a _{Ti} (mT)	
no methanol	1.976	0.8-0.9	_	1.25	
1/0.5	1.976	11–12	-	1.23	
1/0.75		superposition of	two spectra		
1/1	1.978	_	0.34	1.05	
1/2	1.979	0.3	-	1.12	
1/5	1.979	0.4	-	1.13	

Table 1 Spectral parameters of the products from the reaction of Cp₂TiCl₂AlEt₂ (IA) with CH₃OH

of Cp₂TiCl₂Al(Cl)Et, Cp₂TiCl₂AlCl₂, and their mixtures [4] confirms this assignment. The coupling to aluminium in Cp₂TiCl₂AlCl₂ has a value of 0.7 mT and that in Cp₂TiCl₂Al(Cl)Et one of 0.35 mT. The substituent CH₃O is somewhat less electronegative than Cl. The influence of electronegativity of substituents bonded to Al on the spectral parameters of the paramagnetic heterobinuclear dimer has been discussed by Henrici-Olivé [4] and the value of a_{Al} 0.34 mT observed for paramagnetic species in Fig. 1D suggests that the product is Cp₂TiCl₂Al(OCH₃)Et rather than Cp₂TiCl₂Al(OCH₃)₂. Further increase in the proportion of CH₃OH does not produce another multiplet but instead gives a species showing a narrow line (Fig. 1E and 1F) with spectral parameters (g = 1.979, $H_{1/2}$ 0.4 mT) close to those reported for a THF solution of Cp₂TiCl [5], and the latter is probably the product of the action of an excess of CH₃OH on IA; i.e higher proportions of CH₃OH lead to decomposition of the bimetallic complex.

Reactions with CH_3OH are quite fast, the new spectra appearing within a few minutes. The reaction products are stable in solution for ~ 50 h and so the redox process involved in quenching of titanium(III) must be much slower than the initiated reaction with CH_3OH . The results show that CH_3OH has greater tendency to cleave Al-Et bonds than the TiCl₂Al bridge. Analogous results have been obtained with ethanol.

Reactions of $Cp_2TiCl_2AlEt_2$ with HCHO, CO_2 , HCONH₂, HCOOCH₃ and $(CH_3O)_2CO$

We included reactions of methyl formate and methyl carbonate in this study of reactions of C_1 species because they can be readily prepared from C_1 compunds and do not contain C-C bonds; methyl formate and carbonate are often included in studies of the chemistry and technology of C_1 species [2].

 η^5 -Cyclopentadienyl (diethylalanedi- μ -chloro)titanium(III) reacts with all compounds specified above to form paramagnetic species with a six-line multiplet EPR spectrum of type D in Fig. 1. The spectral parameters for a C₁/[Ti] molar ratio of 10/1 are listed in Table 2. The aluminium coupling constants for all products are in the range 0.29–0.34 mT, which suggests that the products are as follows:

$$Cp_{2}TiCl_{2}AlEt_{2} + \begin{cases} HCOH \rightarrow Cp_{2}TiCl_{2}Al(OCH_{2}Et)Et\\ CO_{2} \rightarrow Cp_{2}TiCl_{2}Al[OC(O)Et]Et\\ HC(O)NH_{2} \rightarrow Cp_{2}TiCl_{2}Al[OC(NH_{2})H Et]Et\\ HC(O)OCH_{3} \rightarrow Cp_{2}TiCl_{2}Al[OC(OCH_{3})HEt]Et\\ (CH_{3}O)_{2}CO \rightarrow Cp_{2}TiCl_{2}Al[OC(OCH_{3})_{2}Et]Et \end{cases}$$

All the substituents bonded to Al should have similar effects on aluminium and titanium, and thus the spectral parameters of all the products are very similar.

For $C_1/[Ti]$ molar ratios of less than 10, the spectra were of the type A-C in Fig. 1, but the process was slower than in the case of CH₃OH. However with further increase in the proportion of the carbonyl compound the behaviour was not the same as that for CH₃OH, in that the heterobinuclear Cp₂TiCl₂Al[O(R')(R²)Et]Et dimer was not broken down to Cp₂TiCl. Only for (CH₃O)₂CO did a sharp singlet, which could be tentatively ascribed to Cp₂TiCl solvated with methyl carbonate, appear along with a hyperfine multiplet. The ability of methanol to decompose the

Table 2

C ₁	8	a _{A1} (mT)	a _{Ti} (mT)	
НСНО	1.979	0.34	1.01	
CO	1.978	0.33	-	
HCONH,	1.978	0.29	1.1	
HCOOCH	1.977	0.34	1.05	
(CH ₃ O) ₂ CO	1.978	0.34	not visible	
very weak multiplet singlet	1.983	_	-	
	$H_{1/2} = 0.2$			

Spectral parameters of the products and from IA and carbonyl (C₁ species. Molar ratio $IA/C_1 = 1/10$

Table 3

Spectral parameters of the products from IA and CH₂Cl₂ or CHCl₃ compounds.

Reagent		g	a _{Al} (mT)	a _{Ti} (mT)
CHCl ₃	very weak multiplet singlet	1.975 1.992	0.34	_
	14'-1 -	$H_{1/2} = 0.6$		0.6
CH ₂ CI	singlet	1.975	-	1.1 -

heterobinuclear dimer was further illustrated when methanol was added to the products from IA and C_1 carbonyl species, a sharp singlet being observed.

Reactions of $Cp_2TiCl_2AlEt_2$ with CCl_4 , $CHCl_3$ and CH_2Cl_2

Carbon tetrachloride seems to oxidize titanium(III), since the product solution gives no EPR signal. The spectra parameters for the products from CHCl₃ and CH₂Cl₂ are listed in Table 3. The origin of the sharp singlet is not clear at present, but the products may be Cp₂TiCCl₃ or Cp₂TiCHCl₂ *.

Experimental

 $Cp_2TiCl_2AlEt_2$ (IA) was prepared, under argon in a two-necked flask equipped with a rubber septum, stopcock, and magnetic stirrer, from 1 ml (0.25 g) of Cp_2TiCl_2 and 1 ml of AlEt₃ in 10 ml of tetralin. (The Cp_2TiCl_2 did not dissolve completely in the tetralin, but did so upon addition of AlEt₃ and the solution turned green.) The mixture was stirred for 1 h at room temperature, and a solution obtained in this way was usually used for three reactions with a C_1 compound; e.g. three different amounts of CH_3OH (e.g. 0.33 ml; 0.66 ml; 1.65 ml) were dissolved in 3.3 ml tetralin each (in Schlenk tubes) and one-third of the solution of IA was added to each Schlenk tube from a hypodermic syringe; upon this addition the green

A referee has suggested that the spectrum of the product from CH₂Cl₂ is [Cp₂Ti(μ-Cl)]₂, but the latter has different spectral characteristics [5].

solution of IA turned red or brown depending on the C_1 compound used. These solutions were stirred for ~ 5 min and a few drops were transferred to EPR tubes, all operations being performed under argon. The EPR spectra were recorded at room temperature with a JES-Me3X X-band apparatus (JEOL, Tokyo). Usually at least 3 spectra were recorded, at 0.5 h, 2 h and 24 h, after mixing of the reagents. At least two reproducible runs were carried out for each reaction.

Acknowledgements

This work was supported by the Polish Academy of Sciences (CPBR 3.20.T).

References

- 1 J.E.Mc Murry, Accounts Chem. Res., 7 (1974) 281.
- 2 S. Gambarotta, C. Floriani, A. Chjesi-Villa and C. Grastini, Organometallics, 5 (1986) 2425.
- 3 K. Mach, H. Andropiusova and J. Polacek, J. Organomet. Chem., 194 (1980) 285.
- 4 G. Henrici-Olivé and S. Solivé, Angew. Chem. Int. Ed., 6 (1967) 792.
- 5 H. Andropiusova, A. Dosedlova, K. Hanuŝ and K. Mach, Trans. Metal Chem., 6 (1981) 90.
- 6 T. Mole and E.A. Jeffery, Organoaluminium Compounds, Elsevier, 1972, p. 212, 294.